5 life.augmented
 AN4599 Application note

STEVAL-ISA132V1 24 V 300 W peak power resonant converter

by Riccardo Tosoni

Introduction

This application note describes the features of the STEVAL-ISA132V1 evaluation board at 24 V, 300 W peak power conversion.

The architecture is based on a single-stage LLC resonant converter without PFC using the new L6699 resonant controller.

The L6699 integrates some very innovative functions such as self-adjusting adaptive dead time, anti-capacitive mode protection and a proprietary "safe-start" procedure which prevents hard switching at start-up.

Thanks to the chipset used, the main features of this power supply are:

- very high efficiency under high-load and low-load conditions
- safe start up procedure to avoid hard switching
- hard switching prevention under overload and low-load conditions
- burst mode under low-load conditions with smooth restart to prevent audible noise
- the demo board can deliver more than 300 W peak power for a limited time thanks to the NTC thermal protection positioned near the output diodes.
- continuous power at $30^{\circ} \mathrm{C}$ ambient temperature is 170 W .
- the MOSFET and diode power devices are in D²PAK packages

Figure 1. STEVAL-ISA132V1 300 W peak power SMP evaluation board

Contents

1 Main features 3
2 Circuit description 4
2.1 Start-up sequence 4
2.2 Oscillator setting 4
2.3 Burst mode operation at no load or very light load 6
2.4 Brown out 7
2.5 Overload and short circuit protection 7
2.6 Thermal protection 9
3 Power components 10
4 Magnetic components 11
5 Functional and thermal test 14
6 Waveform 15
7 Electrical diagram 18
8 Bill of material 19
9 Thermal measures 22
10 EMC precompliance test 23
11 Conclusion and remarks 24
12 Revision history 25

1 Main features

The main features of the SMPS are:

- input mains range: from 190 to $264 \mathrm{~V}_{\mathrm{AC}}$ - frequency 50 Hz
- output voltage: $24 \mathrm{~V} 5 \%$
- no-load consumption: < 0.6 W
- efficiency @ 230 Vac > 92\%
- EMI: Within EN55022 Class-B limits conducted precompliance
- safety: Meets EN60950-1
- dimensions: $90 \times 90 \mathrm{~mm}, 50 \mathrm{~mm}$ component maximum height
- weight 220 gr

The circuit consists of a single stage LLC resonant converter.
The MOSFET and diode power components are in D²PAK packages.
The L6699 integrates all the functions necessary to control the resonant converter with a 50% fixed duty cycle and working with variable frequency.

2 Circuit description

2.1 Start-up sequence

D12, D4, R7, C13 in Figure 13 form the start-up circuit.
When the V_{CC} voltage reaches $\mathrm{L} 6699 \mathrm{~V}_{\mathrm{CCon}}$, the system begins the start-up sequence and changes the switching frequency from $f_{\text {start }}$ to the operative frequency.

2.2 Oscillator setting

Figure 2. Oscillator's internal block diagram

The oscillator is programmed externally by means of a capacitor connected from pin 3 (CF) to ground that is alternately charged and discharged by the current defined with the network connected to pin $4\left(\mathrm{RF}_{\text {min }}\right)$.

The pin provides an accurate 2 V reference with approximately 2 mA source capability; the higher the current sourced by the pin, the higher the oscillator frequency.
The Figure 2 block diagram shows a simplified internal circuit explaining the operation.

Table 1. Recommended values for CF as a function of the start-up frequency $\mathbf{f}_{\text {start }}$

$\mathbf{f}_{\text {start }}[\mathbf{k H z}]$	$\mathbf{C F}[\mathbf{p F}]$	$\mathbf{f}_{\text {start }}[\mathbf{k H z}]$	$\mathbf{C F}[\mathbf{p F}]$
150	680	$230-240$	180
160	560	250	150
170	470	260	120
180	390	270	100
$190-200$	330	280	82
210	270	290	68
210	220	300	56

Procedure to set oscillator components:

- nominate the start frequency (do not exceed $300 \mathrm{kHz} \mathrm{f}_{\text {start }}$)
- find the corresponding value of CF in Table 1
- with a chosen $\mathrm{f}_{\text {start }}$ of 156 kHz , the corresponding CF is 560 pF in Table 1
- choose the minimum frequency and determine $\mathrm{RF}_{\min }$ using the equation:

Equation 1

$$
F \min =\frac{1}{3 * C F * R F \min }
$$

The chosen $F_{\text {min }}$ is $49.6 \mathrm{kHz}, \mathrm{CF}$ is 560 pF and thus $R F_{\min }=12 \mathrm{k} \Omega$
Determine $R_{S S}$ using equation:

Equation 2

$$
\text { Fstart }=1 /\left(3 * C F *\left(\frac{R F \min * R s s}{R F \min +R s s}\right)\right)
$$

For the chosen $F_{\text {start }}$ of $156 \mathrm{kHz}, \mathrm{CF}=560 \mathrm{pF}, \mathrm{RF}_{\min }=12 \mathrm{k} \Omega$ and consequently $\mathrm{R}_{\mathrm{SS}}=5.6 \mathrm{k} \Omega$

Verify the following relationships:

Equation 3

$$
R s s=R F m i n /\left(\frac{F s t a r t}{F m i n}-1\right)
$$

Choose $\mathrm{F}_{\max }$ and determine $\mathrm{RF}_{\max }$ using the formula:

Equation 4

$$
R F \max =\frac{3 * R F \min }{8 * \frac{F \max }{F \min }-1}
$$

For a chosen $F_{\text {max }}$ of $150 \mathrm{kHz}, \mathrm{RF}_{\text {max }}=2 \mathrm{k} \Omega$
Calculate the $C_{S S}$ using the formula $C_{S S}=3 * 0.001 / R_{S S}$
In the application, it may be necessary to increase this value to optimize start-up procedure by minimizing the inrush current and charging current of the output capacitor.

Good performance is achieved with $\mathrm{C}_{S S}=4.7 \mu \mathrm{~F}$.

With reference to the schematic in Figure 13:

- $R F_{\text {min }}=R 18=12 \mathrm{k} \Omega$
- $\mathrm{RF}_{\max }=\mathrm{R} 19=3.3 \mathrm{k} \Omega$
- $R_{S S}=R 15=5.6 \mathrm{k} \Omega$
- $\mathrm{CF}=\mathrm{C} 22=560 \mathrm{pF}$
- $\mathrm{C}_{\mathrm{SS}}=\mathrm{C} 26=4.7 \mu \mathrm{~F}$

2.3 Burst mode operation at no load or very light load

To reduce the average switching frequency, the L6699 can operate in burst mode with a series of a few switching cycles in between relatively long idle periods with both MOSFETs in the off state.

The resulting average value of the residual magnetizing current and corresponding loss is reduced considerably, thus facilitating converter compliance with energy saving specifications.

L6699 can be operated in burst mode via pin 5 (STBY): if the voltage applied to this pin falls below 1.26 V , the IC enters the low-consumption idle state, where both gate drive outputs are low and the oscillator is stopped; the IC resumes normal operation when the voltage on pin exceeds $1.26 \mathrm{~V}+30 \mathrm{mV}$.

To implement burst mode operation, the voltage applied to the STBY pin needs to be associated with the feedback loop.

The resonant converter switching frequency and hence burst mode activation strongly depends on the variation of the input voltage.

Use the circuit in Figure 3 when the input voltage range is quite large.
Due to the high non-linear relationship between the switching frequency and input voltage, it is more practical to empirically determine the correct magnitude for $R_{A} /\left(R_{A}+R_{B}\right)$ correction and $R F_{\max }$ to obtain an almost constant burst mode threshold in all input voltage ranges.
In this application, we obtained a good compromise with $R_{A}=56 \mathrm{k} \Omega, R_{B}=150 \mathrm{k} \Omega$ and $R F_{\text {max }}=3.3 \mathrm{k} \Omega$.

Figure 3. Wide input voltage range schematic

AM11386v2

With reference to the schematic in Figure 13:

- $\mathrm{R}_{\mathrm{A}}=\mathrm{R} 26=56 \mathrm{k} \Omega$
- $R_{B}=R 6=150 \mathrm{k} \Omega$
- $R_{H}=R 1+R 5=3 M \Omega$
- $R_{L}=R 8=27 \mathrm{k} \Omega$

2.4 Brown out

Referring to Figure 13, the Line pin is connected to the high voltage input bus with a resistor divider: R1, R5 and R8.

The partition is slightly influenced by resistors R6 and R26.
A voltage below 1.25 V shuts down the IC and consequently lowers consumption and discharges the soft start capacitor.

IC operation is enabled when the voltage exceeds 1.25 V - the comparator is provided with current hysteresis: an internal $13 \mu \mathrm{~A}$ current generator remains on while the voltage applied at the Line pin is below 1.25 V .

Test results:
Decreasing V_{IN} shut down is $100 \mathrm{~V}_{\mathrm{AC}}$

2.5 Overload and short circuit protection

Referenced to Figure 4.

In the L6699, the current sense input ISEN (pin 6) monitors the current flowing in the resonant tank to perform multiple tasks:

1. primary overcurrent protection
2. hard-switching cycle prevention at start up
3. hard-switching cycle prevention during operation

The ISEN pin is able to withstand negative voltages in order to observe the voltage and current of the resonant tank.

ISEN is internally connected to the input of a first comparator referenced to $\mathrm{V}_{\text {ISENX }}$ (0.8 V typ.) and a second comparator referenced to 1.5 V .

If the voltage applied to ISEN exceeds 0.8 V , the first comparator is tripped which in turn activates an internal switch for $5 \mu \mathrm{~s}$, thus discharging the soft-start capacitor C_{SS}.

This increases oscillator frequency, limiting the energy transfer.
The circuit shown in Figure 4 operates as a capacitive current divider.
Cs is typically selected with a value around $\mathrm{C}_{\mathrm{r}} / 100$ and the sense resistor is selected as: $\mathrm{R}_{\mathrm{S}}=0.77 / \mathrm{I}_{\text {crpkx }}{ }^{*}\left(1+\mathrm{C}_{\mathrm{r}} / \mathrm{C}_{\mathrm{s}}\right)$.

The OCP limits primary to secondary energy flow in case of overload or short circuit, but the output current in the secondary winding and in the rectifiers can still rise to dangerous levels.

To prevent any damage and reduce power loss, the converter must be forced to operate intermittently.

The DELAY pin manages the timing of the overcurrent protection.
A resistor and a capacitor are connected from this pin and GND to set the maximum duration of an overcurrent condition before the IC stops switching and the delay after which the IC restarts switching.

Every time the voltage on the ISEN pin exceeds 0.8 V , the capacitor on the DELAY pin is charged by $350 \mu \mathrm{~A}$ and is slowly discharged by the external resistor.
If the voltage on the DELAY pin riches 2 V , the soft start capacitor is completely discharged to push the switching frequency to its maximum value and a $350 \mu \mathrm{~A}$ current source is kept on.

When the voltage on the DELAY pin exceeds 3.5 V , the IC stops switching and internal $350 \mu \mathrm{~A}$ generator is turned off, causing the voltage on the pin to decay because of the external resistor.

The IC enters soft-restart when the voltage drops below 0.3 V .
In this way, the converter under short-circuit or overload condition works intermittently with very low input average power.

If the ISEN pin voltage exceeds 1.5 V , the L6699 is immediately stopped and the $350 \mu \mathrm{~A}$ current source is kept ON until the DELAY pin voltage reaches 3.5 V , at which time the generator is turned OFF and the voltage on the pin decays because of the external resistor; also in this case the IC enters soft-restart when the voltage drops below 0.3 V

Is not easy to find a relationship that links charging time to the CDELAY value, so it is more practical to determine CDELAY experimentally.
To give an approximate indication:

- the time to reach 2 V on the DELAY pin is 100 ms every $1 \mu \mathrm{~F}$;
- the time from 2 V to 3.5 V is about 4.3^{*} CDELAY;
- the time to discharge CDELAY pin from 3.5 V to 0.3 V is about $2.4^{*} \mathrm{RDELAY}^{*} \mathrm{CDELAY}$.

Referring to Figure 13, the resistor and capacitor on the DELAY pin are C21 $=470 \mathrm{nF}$ and $R 29=330 \mathrm{k} \Omega$.

The protection times are:

- approx. 50 ms : slowly increase frequency
- approx. $1.8 \mu \mathrm{~s}$ force frequency to $\mathrm{f}_{\text {start }}$
- about 370 ns: switching is stopped

If the overload is less than 50 ms , the system functions as a power limiter without shutdown.

Figure 4. Current sensing lossless capacitive current divider

2.6 Thermal protection

To render the application unbreakable, it was necessary to apply thermal protection near the output diodes, the warmest area on the power (PWR) supply.

A thermal resistor NTC2 in partition with the R2 resistance is processed by a TSM103W, used as comparator with high hysteresis.
When the output diodes reach $120^{\circ} \mathrm{C}$, the output of TSM103W drives Q3 to drain the current from the optocoupler. The PWR supply shuts off and stays off as long as TSM103W is supplied.

3 Power components

Q1 and Q2 are STB13N60M2 series MOSFETs featuring MDmesh ${ }^{\text {TM }}$ M2 technology.
They are suitable for resonant types, and are highly rugged to withstand hard switching; they reduce losses from switching turn-off commutation and reduce the current consumption due to Qg .

The D3 and D5 STPS20M80CGdiodes are optimized to balance leakage current and voltage drop; they are avalanche rated with a high-junction temperature capacity of $175{ }^{\circ} \mathrm{C}$

4 Magnetic components

Figure 5. Transformer (Code 05801 Class Code 1860.0044 Magnetica)

Table 2. Pin functions

Pin ${ }^{\circ}$	Function	Pin n°	Function	
1	Not connected	$8_{\text {A }}$	Secondary A	$\begin{aligned} & 200 \text { W max } \\ & 24 \text { V } 8.3 \text { A } \end{aligned}$
2	Primary Drain/source	$9_{\text {A }}$		
3	Not present	10_{B}	Ground secondary	
4	Primary with CR	11_{B}		
5	Not present	12_{B}		
6	Auxiliary (12 V 50 mA)	${ }^{13} \mathrm{C}$	Secondary B	
7	Auxiliary ground (12 V 50 mA)	14 C		

Figure 6. Transformer electrical diagram and features

Figure 7. Common mode inductor (Code 07228 Class Code 2258.0001 Magnetica)

- inductance ($1-2=4-3$) 10.5 mH min
- (measured $1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}} 20^{\circ} \mathrm{C}$)
- resistance (1-2 = 4-3) 240 m max
- (measured DC, $\mathrm{T}_{\mathrm{A}} 20^{\circ} \mathrm{C}$)
- leakage inductance 0.53% nom
- (measured 1-2 and 4-3 in S.C, F $10 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}} 20^{\circ} \mathrm{C}$)
- operating current 1.8 A max
- (measured $1-2$ and $4-3, \mathrm{~T}_{\mathrm{A}} 20^{\circ} \mathrm{C}$)
- operating frequency $50-60 \mathrm{~Hz}$
- (current 1.8 A Max, $\mathrm{T}_{\mathrm{A}} 20^{\circ} \mathrm{C}$)
- insulation (1-2 4-3) 1500 V max
- (F 50 HZ , duration test 2 ", $\mathrm{T}_{\mathrm{A}} 20^{\circ} \mathrm{C}$)
- ambient temperature range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-\left(\mathrm{I}_{\mathrm{R}} 1.8 \mathrm{~A}\right.$ max, with self $\left.\mathrm{t}_{\text {rise }} 45^{\circ} \mathrm{C}\right)$
- thermal CLASS B
- storage temperature range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- maximum dimensions: $25.4 \times 19, \mathrm{H} 28 \mathrm{~mm}$, weight 18 g approx.

5 Functional and thermal test

Table 3. Functional and thermal test

	Test	190 Vac	$\mathbf{2 3 0}$ Vac	265 Vac
Functional	Tstart (sec)	3.9	3	2.2
Functional	Pin no load (W)	1	0.6	0.5
Functional	n@load 6.5 A (\%)	91	92	93
Functional	n@load 3.5 A (\%)	91.5	92.5	93.5
Functional	Freq @ load6.5A (kHz	66	80	98
Functional	ILimit (A)	12	13.5	16
Thermal	Delay time thermal protection 200 W (sec)		45	
Thermal	Delay time thermal protection 250 W (sec)		32	

All the measurements are typical and performed at $30^{\circ} \mathrm{C}$ ambient temperature.
Thermal testing is performed starting with a power of 100 W applied for 30 min .

6 Waveform

Figure 8. $\mathrm{I}_{\mathrm{RES}}$ \& V_{HB} load 6.5 $\mathrm{A} \mathrm{V}_{\mathrm{IN}}$ min.

Figure 9. $\mathrm{I}_{\mathrm{RES}}$ \& V_{HB} load 6.5 $\mathrm{A} \mathrm{V}_{\mathrm{IN}}$ nom.

Figure 10. $\mathrm{I}_{\text {RES }}$ \& V_{HB} load 6.5 A $\mathrm{V}_{\mathrm{IN}} \max$

Figure 11. Startup @ 230 VAC

10 mV
Start up 3.11 sec
Start up @ 230 VAC
0.5 sec

5 V
Start up 3.11 sec

CH1 IRES $10 \mathrm{mV} / \mathrm{A}$ CH2 VDD

Figure 12. Short circuit @ $230 \mathrm{~V}_{\mathrm{AC}}$ full load

7 Electrical diagram

Figure 13. Electrical diagram

8 Bill of material

Table 4. Bill of material

Type/Value	Modifier	Part number	Manuf.	Description	Qty	Reference IDs
NM	50V	Generic	Generic	Generic capacitor 0805	1	C20
NM	50V	Generic	Generic	Generic capacitor 1206	1	C29
100pF	1KV	Generic	Generic	Generic capacitor 1206	2	C7, C17
220pF	1KV	Generic	Generic	Generic capacitor 1206	1	C28
220pF	50V	Generic	Generic	Generic capacitor 0805	1	C19
560pF	50V	Generic	Generic	Generic capacitor 1206	1	C22
2.2nF	300 Vac Y2	$\begin{gathered} \text { PHE850EA4220M } \\ \text { A01R } \end{gathered}$	KEMET	Generic capacitor P10.0	2	C1, C5
2.2nF	300 Vac Y1	Generic	KEMET	Generic capacitor P10.0	2	C15
2.2nF	50V	Generic	Generic	Generic capacitor 0805	1	C23
15nF	1KV	B32652A1153J	EPCOS	Generic capacitor P15.0	2	C4, C27
33 nF	50V	Generic	Generic	Generic capacitor 0805	1	C25
100nF	50V	Generic	Generic	Generic capacitor 0805	2	C12, C14
100nF	50V	Generic	Generic	Generic capacitor 1206	1	C16
470nF	275Vac X2	Generic	Generic	Generic capacitor P15.0	2	C2 C3
470nF	50V	Generic	Generic	Generic capacitor 0805	1	C21
$1 \mu \mathrm{~F}$	50V	Generic	Generic	Generic capacitor 1206	1	C18
$4.7 \mu \mathrm{~F}$	16V	Generic	Generic	Generic capacitor 0805	1	C26
$68 \mu \mathrm{~F}$	35 V	Generic	Generic	Generic polarized capacitor -P3.5	1	C24
100 $\mu \mathrm{F}$	35 V	Generic	Generic	Generic polarized capacitor -P3.5	1	C13
$390 \mu \mathrm{~F}$	400V	Generic	Generic	Generic polarized capacitor -P10.0	1	C6

Table 4. Bill of material (continued)

Type/Value	Modifier	Part number	Manuf.	Description	Qty	Reference IDs
$470 \mu \mathrm{~F}$	35 V	Generic	Generic	Generic polarized capacitor -P5.0	4	$\begin{gathered} \text { C8, C9, C10, } \\ \text { C11 } \end{gathered}$
KBU8M	-	Generic	Generic	Full-wave Bridge rectifier	1	D1
LL4148	-	Generic	Generic	Generic small signal diode - SOD80	5	$\begin{array}{\|c} \text { D2, D4, D6, D8, } \\ \text { D10 } \end{array}$
NM	-	Generic	Generic	Zener diode - SOD123	1	D7
$\begin{gathered} \text { NZH15B- } \\ 115 \end{gathered}$	15V	NZH15B-115	NXP	Zener diode - SOD123	1	D9
$\begin{gathered} \text { STPS20M8 } \\ \text { OCG } \end{gathered}$	20A-80V	STPS20M80CG	ST	Dual common-cathode diode	2	D3, D5
STTH108A	1A-800V	STTH108A	ST	Generic diode	1	D12
2Amps (T)	250Volts	39212000000	LITTLEFU SE	Fuse - P5.08	1	F1
SIP header	2-pin	796949-3	TE AMP	2-pin Single in-line connector - P5. 08	1	J2
SIP header	3 -pin	282845-3	TE AMP	3-pin Single in-line connector - P7.62	1	J1
22580001	$2 \times 15 \mathrm{mH} / 1.8 \mathrm{~A}$	22580001	MAGNETI CA	Common mode choke	1	L1
2.20 hms	-	B57237S0229M0	EPCOS	Inrush NTC	1	NTC1
470kohms	0603	B57371V2474	EPCOS	NTC	1	NTC2
BC846A	SOT23-3	BC846A	NXP	NPN Generic	1	Q3
$\begin{gathered} \text { STB13N60 } \\ \text { M2 } \end{gathered}$	11A-600V	STB13N60M2	ST	N-Channel MOS FET	2	Q1, Q2
Oohms	0.125W	Generic	Generic	Generic resistor	4	$\begin{array}{\|c} \text { R17, R28, R34, } \\ \text { R36 } \end{array}$
NM	0.125 W	Generic	Generic	Generic resistor	1	R24
2.20 hms	0.250W	Generic	Generic	Generic resistor	1	R10
10ohms	0.063W	Generic	Generic	Generic resistor	2	R13, R20
10ohms	0.250W	Generic	Generic	Generic resistor	1	R9
27ohms	0.063W	Generic	Generic	Generic resistor	1	R35
470hms	0.250W	Generic	Generic	Generic resistor	1	R38
56ohms	0.063W	Generic	Generic	Generic resistor	2	R14, R21
1Kohms	0.063W	Generic	Generic	Generic resistor	1	R16
3.3Kohms	0.250W	Generic	Generic	Generic resistor	1	R19
3.9Kohms	0.063W	Generic	Generic	Generic resistor	1	R33
5.6Kohms	0.125W	Generic	Generic	Generic resistor	1	R15
8.2Kohms	0.250W	Generic	Generic	Generic resistor	1	R12

Table 4. Bill of material (continued)

Type/Value	Modifier	Part number	Manuf.	Description	Qty	Reference IDs
10Kohms	0.063W	Generic	Generic	Generic resistor	4	$\begin{gathered} \text { R3, R11, R22, } \\ \text { R32 } \end{gathered}$
12kohms	0.125W	Generic	Generic	Generic resistor	1	R18
15Kohms	0.125W	Generic	Generic	Generic resistor	1	R27
22Kohms	0.063W	Generic	Generic	Generic resistor	1	R2
27Kohms	0.125W	Generic	Generic	Generic resistor	1	R8
33Kohms	0.063W	Generic	Generic	Generic resistor	1	R25
56Kohms	0.250W	Generic	Generic	Generic resistor	1	R26
100Kohms	0.250W	Generic	Generic	Generic resistor	2	R4, R7
150Kohms	0.125W	Generic	Generic	Generic resistor	1	R6
180Kohms	0.063W	Generic	Generic	Generic resistor	1	R23
330Kohms	0.125 W	Generic	Generic	Generic resistor	1	R29
1.5Mohms	0.250W	Generic	Generic	Generic resistor	2	R1, R5
18600044	$520 \mu \mathrm{H} / 80 \mathrm{kHz}$	18600044	MAGNETI CA	Resonant transformer	1	TR1
L6699D	-	L6699D	ST	Resonant PWM Control	1	U5
TCLT1003	-	TCLT1003	Vishay	Optocoupler	1	U3
TSM103W	-	TSM103W	ST	Generic	1	U6
S20K275	275Vac	$\begin{gathered} \text { B72220P3271K10 } \\ 1 \end{gathered}$	EPCOS	Varistor	1	VR1

$9 \quad$ Thermal measures

Figure 14. Thermal map

$230 \mathrm{~V}_{\mathrm{AC}}$ Load 7 A steady thermal after $2 \mathrm{~h} \mathrm{~T}_{\mathrm{amb}} \mathbf{3 0 ^ { \circ }} \mathbf{C}$

summary

- Trasfo Copper $95.5^{\circ} \mathrm{C}$
- Trasfo Core $84.2^{\circ} \mathrm{C}$
- secondary diodes $118.8^{\circ} \mathrm{C}$
- primary MOSFETs $73.6^{\circ} \mathrm{C}$
- common mode choke $69.4^{\circ} \mathrm{C}$

10 EMC precompliance test

Figure 15. EMC test 150 W

Figure 16. EMC Test No Load

11 Conclusion and remarks

This power supply is a high performance, low cost solution for any application requiring high peak power for a limited time. These are usually industrial applications and don't require PFC stage, such as vending machines, automatic gates, textile machinery etc.

Some features of this power supply can be enhanced with further circuitry. For example, low consumption with no load can be optimized by adding high voltage start up and a more complex compensation for burst mode versus voltage input variation.

It is possible to change the output voltage by changing the R25, R33 voltage divider and the transformer.

Transformer codes for different $\mathrm{V}_{\text {OUT }}$ are:

- 15 V - 18 V 300 W Peak Transformer MAGNETICA code 1860.0133
- 24 V 300 W Peak Transformer MAGNETICA code 1860.0044
- 28 V - 30 V 300 W Peak Transformer MAGNETICA code 1860.0102
- 36 V 300 W Peak Transformer MAGNETICA code 1860.0134

For voltage output greater than 35 V , limit the voltage at the TSM 103 W supply V_{CC} sec.

12 Revision history

Table 5. Document revision history

Date	Revision	Changes
03-Feb-2015	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2015 \text { STMicroelectronics - All rights reserved }
$$

